
SURVIVAL MACHINE 
new music for flute and computer derived from the gene neuroligin 4, Y-linked 
composed by David Morneau 
 
 
Concept 
In his book The Selfish Gene, Richard Dawkins proposes that the primary agent of evolutionary development and 
selection is the gene. Our genes began their existence as simple chemical compounds with the improbable ability to 
replicate themselves. These replicators gradually became more complex and their chemical resources became scarce, 
forcing them to compete for their survival. Dawkins argues that the two primary survival mechanisms became the 
development of protective barriers and the eventual cooperation between replicators, which led to the development 
of colonies of replicators working together for their survival. 
  
Whatever became of the replicators? Where are they now? 
 

Now they swarm in huge colonies, safe inside gigantic lumbering robots, sealed off from 
the outside world, communicating with it by tortuous indirect routes, manipulating it by 
remote control. They are in you and in me; they created us, body and mind; and their 
preservation is the ultimate rationale for our existence. They have come a long way, 
those replicators. Now they go by the name of genes, and we are their survival 
machines. [Richard Dawkins] 

 
 
DNA carries the codes for life in long series of chemical bases, of which there are only four types: adenine, guanine, 
thymine, and cytosine. How the coding actually works and the processes by which life results are the topics of much 
study and debate. The purpose of Survival Machine is to illustrate the process in a general and artistic manner. Also, it 
is an attempt to reconcile the friction between the absolute rigidity of the genetic code and the fluid, unpredictable 
experience of human existence. 
 
Beginning with the raw data from the gene neuroligin 4, Y-linked, I developed a set of rules that would create sounds 
from the data coded in the DNA. These rules, once encased in an algorithm, generated sounds in three categories: 
quick moving, angular melodies; sustained tones that provide harmonic support; and percussive rhythms. The actions 
of the algorithm is a metaphor for protein synthesis. 
 
 In order to make these sounds audible, the algorithm—as equivalent to protein—had to interact with the electronic 
music equivalents of oxygen, carbon, and hydrogen; namely sine wave oscillators and a white noise generator. The 
actions of the algorithm to shape these raw elements into musical timbres was guided at all times by the raw 
nucleotide data from the gene. 
 
Once these sounds were created I set about composing additional music for flute to be performed alongside the 
computer music. The materials created by the algorithm shaped and guided the composition of the flute part; some 
melodic ideas coming straight from the computer music. There are also passages where the flute struggles to break 
from the generated music, including a freely improvised passage in the last section of the piece. 
 
We do not perceive and experience others as a collection of genetic codes and inherited traits. Instead it is the often 
intangible aspects of personality and patterns of behavior—both in others and in ourselves—that are the basis of our 
relationships. In the same way, this piece is more than the simple sonic animation of genetic code. It is an attempt to 
create music that is appealing for reasons other than the method of its genesis. 
 
 



Data to Sound 
This entire piece is being built from the data found on one gene on the Y chromosome: neuroligin 4 Y-linked 
(NLGN4-Y). I chose this gene since there is another version of it on the X chromosome (NLGN4-X), leaving open 
the possibility of a companion work. 
 
I began by downloading raw nucleotide data from Ensembl Human at the Sanger Institute [NLGN4-Y here], one of 
several genome browsers available for researchers. This site displays the data with introns (non-coding segments) 
removed and with the exon divisions highlighted. 
 
This is what the raw data looks like (exons alternate blue and black): 
 

GAGACGAAGCAGGGAGAGAGTGAACTTCAGCCCCGTCCCCTCCCCACTGCCACGGCTGGG 

GCAACCCAACCCGCGCCTGAAGCGGCTTGGCTTGACCTGCGGAAGCGCGGGCCGGGATGG 

CGTGGGGAGAGGGAGGTAGGTGCCACTGGGCTGCAGATGACGAGTGGGTTGGGGGCTTGC 

TGTGGGACAAGAGGTTCAGGTTCCGGCCTGCGCCTTCCACTCCGCGGTGGCGCTCTCTGC 

CTGCGGTTTTCCAGGAGGCCGATCTACCCCAGGGACACTCTCATCCTTCAGGCGGTCTCC 

TGGACGCCCTTTCCTCCCCTTGCCTCCCAGCCTGACCTGGCTCTTTCGCCCCTCGGAGAA 

CCGGTTGCATTGGAGTTTTCGAAAGACTTATCTTTCTGCAGGCTCGCCTCTGAGCTTTGT 

CTCCTTGGAGCCACCTCACTTAGACAGCTTCGGATGTGGATGCAGATTTGAACCATGTTG 

CGTCCCCAGGGACTGCTATGGCTCCCTTTGTTGTTCACCTCTGTCTGTGTCATGTTAAAC 

TCCAATGTTCTTCTGTGGATAACTGCTCTTGCCATCAAGTTCACCCTCATTGACAGCCAA 

GCACAGTATCCAGTTGTCAACACAAATTATGGTAAAATCCAGGGCCTAAGAACACCATTA 

CCCAGTGAGATCTTGGGTCCAGTGGAGCAGTACTTAGGGGTCCCCTATGCCTCACCCCCA 

ACTGGAGAGAGGCGGTTTCAGCCACCAGAATCCCCATCCTCCTGGACTGGCATCCGAAAT 

GCTACTCAGTTTTCTGCTGTGTGCCCCCAGCACCTGGATGAAAGATTCTTATTGCATGAC 

ATGCTGCCCATCTGGTTTACCACCAGTTTGGATACTTTGATGACCTATGTTCAAGATCAA 

AATGAAGACTGCCTTTACTTAAACATCTATGTGCCCATGGAAGATGATATTCATGAACAG 

AACAGTAAGAAGCCTGTTATGGTCTATATCCATGGGGGATCTTACATGGAGGGAACCGGT 

AACATGATTGATGGCAGCATTTTGGCCAGCTATGGGAACGTCATCGTTATCACCATTAAC 

TACCGTCTGGGAATACTAGGGTTTTTAAGTACCGGTGACCAGGCAGCAAAAGGCAACTAT 

GGGCTCCTGGATCAGATTCAAGCACTGAGGTGGATTGAGGAGAATGTCGGAGCCTTTGGC 

GGGGACCCCAAGAGAGTGACTATCTTTGGCTCGGGGGCTGGGGCCTCCTGTGTCAGCCTG 

TTGACCCTGTCCCACTACTCAGAAGGTCTCTTCCAGAAGGCCATCATTCAGAGCGGCACT 

GCCCTGTCCAGCTGGGCAGTGAACTACCAGCCGGCCAAGTACACTCGGATATTGGCAGAC 

AAGGTCGGCTGCAACATGCTGGACACCACGGACATGGTAGAATGTCTGAAGAACAAGAAC 

TACAAGGAGCTCATCCAGCAGACCATCACCCCGGCCACCTACCACATAGCCTTTGGGCCG 

GTGATCGACGGCGACGTCATCCCAGACGACCCCCAGATCCTGATGGAGCAAGGCGAGTTC 

CTCAACTACGACATCATGCTGGGCGTCAACCAAGGGGAAGGCCTGAAGTTCGTGGACGGC 

ATCGTGGATAACGAGGACGGTGTGACGCCCAACGACTTTGACTTCTCCGTGTCCAACTTC 

GTGGACAACCTTTACGGCTACCCTGAAGGGAAAGACACTTTGCGGGAGACTATCAAGTTC 

ATGTACACAGACTGGGCCGATAAGGAAAACCCGGAGACGCGGCGGAAAACCCTGGTGGCT 

CTCTTTACTGACCATCAGTGGGTGGCCCCCGCCGTGGCCACCGCCGACCTGCACGCGCAG 

TACGGCTCCCCCACCTACTTCTATGCCTTCTATCATCACTGCCAAAGCGAAATGAAGCCC 

AGCTGGGCAGATTCGGCCCATGGCGATGAAGTCCCCTATGTCTTCGGCATCCCCATGATC 

GGTCCCACAGAGCTCTTCAGTTGTAATTTCTCCAAGAACGACGTCATGCTCAGTGCCGTG 

GTGATGACCTACTGGACGAACTTCGCCAAAACTGGTGATCCAAACCAACCAGTTCCTCAG 

GATACCAAGTTCATTCATACAAAACCCAATCGCTTTGAAGAAGTGGCCTGGTCCAAGTAT 

AATCCCAAAGACCAGCTCTATCTGCATATTGGCTTGAAACCCAGAGTGAGAGATCACTAC 

CGGGCAACGAAAGTGGCTTTCTGGTTGGAATTGGTTCCTCATTTGCACAACTTGAACGAG 



ATATTCCAGTATGTTTCAACAACCACAAAGGTTCCTCCACCAGACATGACATCATTTCCC 

TATGGCACCCGGCGATCTCCCGCCAAGATATGGCCAACCACCAAACGCCCAGCAATCACT 

CCTGCCAACAATCCCAAACACTCTAAGGACCCTCACAAAACAGGGCCCGAGGACACAACT 

GTCCTCATTGAAACCAAACGAGATTATTCCACCGAATTAAGTGTCACCATTGCCGTCGGG 

GCGTCGCTCCTCTTCCTCAACATCTTAGCCTTTGCGGCGCTGTACTACAAAAAGGACAAG 

AGGCGCCATGAGACTCACAGGCACCCCAGTCCCCAGAGAAACACCACAAATGATATCACT 

CACATCCAGAACGAAGAGATCATGTCTCTGCAGATGAAGCAGCTGGAACACGATCACGAG 

TGTGAGTCGCTGCAGGCACACGACACGCTGAGGCTCACCTGCCCTCCAGACTACACCCTC 

ACGCTGCGCCGGTCGCCGGATGACATCCCATTTATGACGCCAAACACCATCACCATGATT 

CCAAACACATTGATGGGGATGCAGCCTTTACACACTTTTAAAACCTTCAGTGGAGGACAA 

AACAGTACAAATTTACCCCACGGACATTCCACCACTAGAGTATAGCTTTTCCCTATTTCC 

CCTCCTATCCCTCTGCCCCTACTGCTCAGCAATGTAAAAGAGACAAATAAGGAGAAAGAA 

AATCTCCAAACCAGGAATGTTTTTGTGCCACTGACTTTAGATAAAAATGCAAAAGGGCAG 

TCATCCTGTCCCAGCAGACCCTTCTCATTGGCATTTTCCAGTATTGTGAGATCAATTTCT 

GACCATATGAAATGTGAAAAGTATATGTTTCTGTTACAATACTGCTTTAAGATCTAAACC 

ATGCCAACAGATGTTTCGTGTGACTAGGACATCACCATTTCAAGGAACTGTGTGTTTCCA 

ACATCATGGTAGCAGCACACACTTCCAAAGCTCAGCCAGGGACACTTAATATTTTTTAAT 

TACAATGGAAATTTAAACATTTTTATGTGGGCTACACAATGGATGGCTCTTCTTAAGTGA 

AGAAAGACTCTATAGGCTTTTACACAGCACATGAAGCAGTAATCCAGAAAGAAGGAAATG 

CAGAATTTTATTATCAAAGTAAGCGAATTGACTGTGCAGAAAAATTGTAGGGTTCTGTGG 

AAGGAGGTATTCTGCCAGCCTGAACTATATTTAAGAAACTTTGTAAAAAATAAAAATGTA 

TATAGCTGTGAGCTCAAACAAAAACTGCAGACAAACAAAAAAGAGAAAAGCTTTTATTTG 

TGTTTTCAGTTTGAAAGAACTTTTAGCAAGGTTGTGCTTTCAAACACATATTAGTCCTAC 

CACCTTAGTTCCTCTACAGCAAAAGAGGCTTTTCTTCTTAATTACATGTAAACAAAGACA 

TGGGATTTTCTGACGTAAGATTTTCATTTGTAGGAATATGTGATGTCAAATGGAAGACTC 

AGAAGTTTTGTGTGGCCTATTTCTCCCTGTCAGGTTGCACAGATGCATGTAGAGCATTCT 

TAGGAGACCATTGTTTTAGAAAACTTTGATTTGTACATGTTAGTTTTCATGAAATTGCAA 

CACAGAGATAGGTCCTAAAAGTGGAATGTATTTAAAACTTGTTGAATTAGACACACACAC 

ACAGACACACACAAAGAATCAGCAGAGAAAACAAAATACAAGTCCTGTTCTGTAGTTCTT 

GCCCTTTGAATATATTTGGGAAGAGTTGCTTCCTATTTCAGGACCCTGCCAAAAAAGAAG 

AAAGCTTGCCTTTGGTGGGGCTATGCCCCTTGGAGTAAATACAGCTCTGTGTTCCCTAGC 

AGCTGCCGGAGGATTTGGCTGATGAAGTACCTGCTCAGCTTAGCTAATCAGATTAAAGGA 

AGACATGTATGTCTTTTGTTTAAGCACCTAGTCCCTTATGTATCAGTAAACAGGTTTTTA 

AAAATCTTTTATGTCATTTATAGGATAAAACATATGCTTGTCTGAAAATATCACCTTTTG 

TGGATTTATCTGATCACCAAATAATAAATATTAAGAAGAATGGGGGAAAAAGGATAGAAT 

ATTAAAACTGCTTTGCATAGGTTTTTGGGGAAATTAGGATATCTTCACTGACAAGACACT 

GAATGGAATTTATTCACCCATTTTAAATTGGTTACTTGGGGATCAGAGATTTGTCTCTCC 

AACAGCTTGTGGTTTTCTTATTACTCATTTTCAGGAAAGTTTGTAGTATTACAAGGCAGA 

AGGAAACACAGTAGCAATGGTTGCTCTATATTTTGTCTTTCAAAGATTACTGCATTACCA 

AGAAACAGTAGCCAAAGATGTTTGAAGATCATGTCCCTTAGCTGCATTGTGGGTTATTCT 

AGAAATCCAATGTTAAATGCCTCTACTAAAGTGGGGATTCCCCATAAAAATTGTCCAGCT 

ACCTGACTCTTTTGCAATAACAACTTTGATTACTGAATCCATACACTCAAACTATAGTGA 

TATATCAGTGTTTGGGAGTGACCTCTAGAAAAAAGAAAACTGTTTTTAGAAATACATAAA 

ATCACTTCCAAATCCTGTTGCTTATGTTGGGTTAAATTTGAAAGCAATTCTCTATATATA 

AATATGTGAAATATTATGATCTGAACTTAGCACACATGAAGCAACATTTCTTTGCTACAC 

AGAGGTGTCTTGGAAAGATTTCATTCCCAATTCATTTTTCATAGATCTATAATCAGGCAA 

TTTCTGCAAGCAATGTATGACCCCACCTGAGCAACCACAAATAGGCTCTCCATGAAACTG 

CAAAGGAACTGATGTGTGGCATCCATGCTGGTTTTGTCTGTCTATAATATGAATTCAAGT 

ATCTGTTCATATTTCCAATTGTCTCCTGCTAGCAATATGTGCCACAACATGACAGTCTTG 



TGACATCTTAAGGAAAAGAAGAGTTCCTGTTAAATGAATAGCTTTAGCTTTTACAGGGGA 

TTATGATTAAAAGTGATTTAGTACATCTT 

 

 

The first step in translating the data was to separate it by exon, which allowed me to keep track of where the sectional 
divisions occur. This is how I will be generating the form for the music. 
 
Next, the nucleotides were converted to codons, which is to say they were split into groups of three: ACA, TCA, 
TGC, etc. Each codon was then converted to a number from 1 – 64 (numbers are necessary for the Max/MSP 
algorithm, as will be seen). Here is a version of the chart I used. It includes my numbering system as well as the 
amino acid that each codon represents. (The amino acid data is used occasionally my the synthesis process.) 
 
TTT = 1 Phenylalanine (Phe) TCT = 2 Serine (Ser) 

TAT = 3 Tyrosine (Tyr) TGT = 4 Cysteine (Cys) 

TTC = 5 Phe TCC = 6 Ser 

TAC = 7 Tyr TGC = 8 Cys 

TTA = 9 Leucine (Leu) TCA = 10 Ser 

TAA = 11 STOP TGA = 12 STOP 

TTG = 13 Leu TCG = 14 Ser 

TAG = 15 STOP TGG = 16 Tryptophan (Trp) 

CTT = 17 Leu CCT = 18 Proline (Pro) 

CAT = 19 Histidine (His) CGT = 20 Arginine (Arg) 

CTC = 21 Leu CCC = 22 Pro 

CAC = 23 His CGC = 24 Arg 

CTA = 25 Leu CCA = 26 Pro 

CAA = 27 Glutamine (Gln) CGA = 28 Arg 

CTG = 29 Leu CCG = 30 Pro 

CAG = 31 Gln CGG = 32 Arg 

ATT = 33 Isoleucine (Ile) ACT = 34 Threonine (Thr) 

AAT = 35 Asparagine (Asn) AGT = 36 Serine (Ser) 

ATC = 37 Ile ACC = 38 Thr 

AAC = 39 Asn AGC = 40 Ser 

ATA = 41 Ile ACA = 42 Thr 

AAA = 43 Lysine (Lys) AGA = 44 Arg 

ATG = 45 Methionine (Met) ACG = 46 Thr 

AAG = 47 Lys AGG = 48 Arg 

GTT = 49 Valine(Val) GCT = 50 Alanine (Ala) 

GAT = 51 Aspartic acid (Asp) GGT = 52 Glycine (Gly) 

GTC = 53 Val GCC = 54 Ala 

GAC = 55 Asp GGC = 56 Gly 

GTA = 57 Val GCA = 58 Ala 

GAA = 59 Glutamic acid (Glu) GGA = 60 Gly 

GTG = 61 Val GCG = 62 Ala 

GAG = 63 Glu GGG = 64 Gly 



The last step in preparing the data for the algorithm was to "fold" it into lists, mimicking the folding that occurs 
naturally in protein molecules. The three "stop" codons (# 11, 12, & 15) were used to separate the large list of data 
into smaller units. Each stop codon was placed at the beginning of the following list, creating four types: three that 
begin with a stop codon (11, 12, 15) and one that does not (i.e. the first list in each exon). The data for neuroligin 4 
Y-linked now looks like this 
 
exon 1 
• 63 46 47 31 60 63 36 59 17 31 22 20 22 21 22 34 54 46 50 64 58 38 27 22 62 18 59 62 50 16 17 55 29 32 47 24 
64 30 60 16 20 64 63 48 63 57 52 54 34 64 29 31 45 46 36 64 13 64 50 8 4 64 42 44 52 10 52 6 56 29 24 17 26 21 
24 52 56 50 21 8 29 32 1 6 48 48 30 37 7 22 48 55 34 21 37 17 31 62 53 6 16 46 22 1 18 22 17 54 6 31 18 55 29 50 
17 14 22 21 60 59 30; 
 
exon 2 
• 49 58 13 63 1 14 43 55 9 2 5 8 48 21 54 2 63 17 4 21 17 60 54 38 10 17 44 31 17 32 45 16 45 31 33; 
• 12 38 45 13 20 22 31 60 29 25 16 21 18 13 13 5 38 2 53 4 53 45 9 39 6 35 49 17 29 16 41 34 50 17 54 37 47 5 38 
21 33 55 40 27 58 31 3 26 49 53 39 42 35 3 52 43 37 31 56 25 44 42 26 9 22 36 63 37 13 52 26 61 63 31 7 9 64 53 
22 3 54 10 22 26 34 60 63 48 32 1 31 26 26 59 6 26 6 6 16 34 56 37 28 35 50 34 31 1 2 50 61 8 22 31 23 29 51 59 
44 5 9 13 19 55 45 29 22 37 16 1 38 38 36 13 51 34 13 45 38 3 49 27 51 27 35 59 55 8 17 7 9 39 37 3 61 22 45 59 
51; 
 
exon 3 
• 41 5 45 39 39 36 47 47 18 49 45 53 3 37 19 64 60 2 7 45 63 60 38 52 39 45 33 51 56 40 33 13 54 40 3 64 39 53 
37 49 37 38 33 39 7 20 29 60 41 25; 
 
exon 4 
• 52 1; 
• 11 57 30 61 38 48 31 27 47 58 34 64 21 29 51 31 33 27 58 29 48 16 33 63 63 35 53 60 54 1 56 64 55 22 47 44 61 
34 37 1 56 14 64 50 64 54 6 4 53 40 29 13 38 29 6 23 7 10 59; 
 
exon 5 
• 53 2 6 44 48 26 10 5 44 62 58 54 29 6 40 16 58 61 39 7 31 30 54 47 7 34 32 41 13 58 55 47 53 56 8 39 45 29 55 
38 46 55 45 57 59 4 29 47 39 47 39 7 47 63 21 37 31 31 38 37 38 30 54 38 7 23 41 54 1 64 30 61 37 55 56 55 53 37 
26 55 55 22 31 37 29 45 63 27 56 63 5 21 39 7 55 37 45 29 56 53 39 27 64 59 56 29 47 5 61 55 56 37 61 51 39 63 
55 52 61 46 22 39 55 1 55 5 6 61 6 39 5 61 55 39 17 7 56 7 18 59 64 43 55 34 13 32 63 34 37 47 5 45 7 42 55 16 54 
51 47 59 39 30 63 46 32 32 43 38 29 61 50 21 1 34 55 19 31 16 61 54 22 54 61 54 38 54 55 29 23 62 31 7 56 6 22 
38 7 5 3 54 5 3 19 23 8 27 40 59 45 47 22 40 16 58 51 14 54 19 56 51 59 53 22 3 53 5 56 37 22 45 37 52 22 42 63 
21 5 36 4 35 5 6 47 39 55 53 45 21 36 54 61 61 45 38 7 16 46 39 5 54 43 34; 
 
exon 6 
• 60 44 21 44 36 1 61 16 18 33 2 22 4 31 49 58 31 45 19 57 63 19 2; 
• 15 63 38 33 49 9 59 39 1 51 13 7 45 9 49 5 45 43 13 27 23 44 51 48 6; 
• 11 47 16 35 57 1 43 34 4; 
• 12 33 44 23 42 23 42 55 42 23 43 59 10 58 63 43 42 43 7 47 6 4 2 57 49 17 54 17; 
• 12 41 3 13 60 44 49 50 6 3 5 48 38 29 26 43 47 47 43 50 8 17 16 16 56 3 54 18 16 36 43 7 40 2 61 5 18 40 40 8 
32 48 33 16 29 45 47 7 29 21 40 9 50 35 31 33 43 60 44 19 57 4 17 13 1 47 23 25 53 18 3 57 10 57 39 48 1 9 43 37 
1 3 53 33 3 48 41 43 19 45 17 53; 
• 12 43 3 23 17 13 16 33 3 29 37 38 43; 
• 11; 
• 11 41 9 44 44 45 64 59 43 60; 



• 15 35 33 43 34 50 13 19 48 1 13 64 43 9 60 3 17 23; 
• 12 27 55 34 59 16 35 9 5 38 19 1 43 13 49 34 16 60 10 63 33 4 21 6 39 40 13 16 1 2 3 7 10 1 10 60 47 1 57 57 9 
27 56 44 48 43 23 36 40 35 52 8 2 41 1 4 17 10 47 33 34 58 9 26 44 39 36 40 27 44 4 13 47 37 45 6 17 40 8 33 61 
52 3 2 44 35 26 45 9 35 54 2 34 43 61 64 33 22 19 43 35 4 26 50 38; 
• 12 21 1 8 35 39 39 1 51 7; 
• 12 37 19 42 21 43 25; 
• 15; 
• 12 3 37 36 49 16 63; 
• 12 18 25 59 43 44 43 29 1 9 59 41 19 43 37 34 6 43 6 4 8 9 4 16 49 43 1 59 40 35 2 25 3 41 35 45; 
• 12 35 33 45 37; 
• 12 34; 
• 15 23 42; 
• 12 40 39 33 2 13 25 23 44 52 53 13 59 44 1 19 6 27 5 33 1 19 44 2 41 37 48 27 1 29 27 58 45 3 55 22 38; 
• 12 58 38 42 35 48 21 6 45 43 29 27 48 39; 
• 12 4 61 58 6 45 29 49 13 2 53 3 35 45 35 10 36 37 4 10 3 5 27 13 2 18 50 40 35 45 8 23 39 45 42 53 13; 
• 12 19 17 47 59 47 47 36 6 4; 
• 11 45 35 40 1 40 1 7 48 60 9; 
• 12 9 43 61 33; 
• 15 7 37; 
 
Each type of list was used to generate sounds in a different manner. Where possible, the codons were used in 
combination rather than one per note or event. This allowed for a wider variety in the sounds and more closely 
mimics the function of DNA where codons—and even genes—work together to create single traits for their survival 
machine. 
 
List type 0 (first list in each exon) 
The codons in these lists are grouped in fours and are used to determine pitch and timbre for non-melodic tones. 
These tones appear in the music as accompaniment figures for the flute as well as for other lists. Also, some the the 
timbres are used for pitches in subsequent lists from the same exon. 
 
The data fed through the patch is grouped into sets of four. The last number in the list will be duplicated to fill out 
the last group if the list is not able to be evenly divided. For the first exon the data now looks like this: 
 
63 46 47 31; 
60 63 36 59; 
17 31 22 20; 
22 21 22 34; 
54 46 50 64; 
58 38 27 22; 
62 18 59 62; 
50 16 17 55; 
29 32 47 24; 
64 30 60 16; 
20 64 63 48; 
63 57 52 54; 
34 64 29 31; 
45 46 36 64; 
13 64 50 08; 
04 64 42 44; 



52 10 52 06; 
56 29 24 17; 
26 21 24 52; 
56 50 21 08; 
29 32 01 06; 
48 48 30 37; 
07 22 48 55; 
34 21 37 17; 
31 62 53 06; 
16 46 22 01; 
18 22 17 54; 
06 31 18 55; 
29 50 17 14; 
22 21 60 59; 
30 30 30 30; 
 
Each group becomes one note with the first number determining pitch and the other three determining timbre. The 
patch used a basic Frequency Modulation (FM) synthesizer where the second and third numbers determine the 
amount of modulation applied to the note. This way, each note has a different sound—the amount of difference can 
be subtle though. 
 
The fourth number selects an envelope shape for the modulation. The envelope acts as a volume controller that 
determines how much of the modulated sound gets mixed with the pure tone, making the sound dynamic rather than 
static. In the main patch (shown on the left above) the last three numbers in the groups also determine the overall 
amplitude envelope shape for the sound, choosing from sets of attack, sustain, and release shapes (I have chosen to 
include decay in the attack and sustain shapes). The process of choosing an envelope shape in all cases is determined 
by the amino acid that each codon represents (allowing for fewer total envelope shapes). 
 
List type 11 
This list uses pairs of codons to select one of thirteen rhythmic cells. These cells are then combined to create longer 
rhythmic passages. On its own, this list will feed the rhythms through a filter that is attached to a noise generator. In 
the presence of list type 12, the results will also be used for the generated melodic tones. 
 
The data in these lists determines rhythmic patterns. These patterns are realized by this patch and also in conjunction 
with list type 12. To determine the rhythm, each number is first converted to either 1, 2, 3, or 5. If the number is 
prime it becomes 1, if it can be divided by 2 then it becomes 2, likewise for 3 and 5. In the case of numbers that can 
be divided by more than one of 2, 3, and 5 (such as 12, 15, and 30) the number from the list is converted to the 
largest number it can be divided by—for example, 30 can be divided by 2, 3, and 5 so it is converted to 5. 
 



Next, these numbers are paired, and each pair determines one rhythmic cell. The length of the cell is determined by 
the first of the pair and the number and type of articulations is determined by the second of the pair. I've prepared a 
chart to show each of the cells. 

 
 
 
Turning for a moment to the second list on the fourth exon, we can see that the first eight numbers are: 11 57 30 61 
38 48 31 27. Using the method detailed above this list is translated as: 1 3 3 1 2 3 1 3, which gives us this rhythm: 
 

 
Depending on its context this rhythm is either applied to a melody generated by list type 12 or it is articulated on its 
own. The rhythms are articulated by the manipulation of a band-pass filter on the output of a noise generator. This 
process is commonly known as subtractive synthesis. By setting the filter to two different frequencies, a primitive 
electronic percussion sound is produced. 
 
List type 12 
The melodic list in the set, this list generates pitch for melodic figures. Of all the lists, this one is the most dependent 
on the others. Its timbre is taken from the first pitch in the list type 0 in the same exon. When there is a list type 11 in 
the same exon, rhythmic information will come from that list. Otherwise the rhythm for this list will be an 
undifferentiated string of 16th notes. 
 
This list is least like the others as it translates every codon to its own note. Unless it is combined with the output from 
a list type 11 the notes occur at a constant rate (16th notes). Often the resulting melodic lines provide material for 
the flute part. 
 
The patch for this list type uses Frequency Modulation (FM) synthesis like list type 0. This patch implements a 
simpler version of the synthesis, resulting in an even timbre from one note to the next. 
 
List type 15 
Each occurrence of this list will mimic the function of list occurring directly before it in the exon. This all-purpose list 
type models the interdependence of genetic material in the construction of a living being. 
 



Sound to Music 
Once the sounds were created I set to composing music for the flute part. In order to allow for a certain level of 
flexibility and expression I allowed myself to adjust the DNA sounds as follows: 
 

• The rhythms for all sounds generated by list type 0 were freely composed, but no pitches could be repeated 
or reordered. 

• Sounds from different lists could overlap freely within the same exon. 
• List type 11 can repeat 
• In the last section (exon 6) list type 12 can repeat, and the repetitions can be freely reordered, but not 

shortened. 
 
While working with the material I was surprised—and pleased—to see pitch patterns emerge. For example, in the 
first section the pitches F, Bb, F#, appear twice in that order. Many other times a pitch will repeat (usually in a 
different octave). These patterns were all helpful when trying to create continuity within sections, as well as overall 
through the piece. 
 
The flute music always relates to the DNA music in some way. In the open, recitative-like passages the flute lines use 
the computer pitches points or arrival and departure. I was also able to draw motifs from the list type 12 music that 
also provide abundant material for the flute. 
 
In the last part (exon 6) a section of improvisation is included. This is natural in the context of the loop based music 
(due to repetitions of lists 11 and 12). And it provides one last element of tension between the strict coding the the 
DNA music and spur of the moment creativity. 
 
In performance, the player will be provided with a foot pedal connected to a computer, controlling the playback of 
the DNA sounds. At certain points in the piece the computer will pause playback, allowing the player to catch up. Or 
more accurately: allowing the player to be expressive without running the risk of losing synch with the playback. 
Giving the player this control is appropriate, not only in general performance terms, but also in keeping with my 
metaphor. As Dawkins puts it: 
 

The genes too control the behavior of their survival machines, not directly with their fingers on 
puppet strings, but indirectly like the computer programmer. All they do is set it up beforehand; 
then the survival machine is on it's own and the genes can only sit passively inside… Like the chess 
programmer the genes have to 'instruct' their survival machines not in specifics, but in the general 
strategies and tricks of the living trade. 
 
Richard Dawkins. The Selfish Gene (Oxford University Press, 1976), pg. 56, 59. 


